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Abstract: Light-emitting diodes (LEDs) will play a major role in future
indoor illumination systems. In general, the generalized Lambertian pattern
is widely used as the radiation pattern of a single LED. In this letter, we
show that the illuminance distribution due to this Lambertian pattern, when
projected onto a horizontal surface such as a floor, can be well approximated
by a Gaussian function.

© 2008 Optical Society of America

OCIS codes: (150.2950) Illumination; (230.3670) Light-emitting diodes.

References and links
1. Lumileds, ”LUXEON Power LEDs”, http://www.lumileds.com/products/luxeon/.
2. J. M. Kahn and J. R. Barry, “Wireless Infrared Communications” Proc. IEEE, 85, 265-298 (1997).
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1. Introduction

Due to the rapid development of solid state lighting technologies, light-emitting diodes (LEDs)
will largely replace incandescent and fluorescent lamps in future indoor illumination systems.
An LED based illumination system may consist of a large number, e.g., hundreds or even
thousands, of spatially distributed LEDs with narrow beams. The reason for this large number
mainly lies in the fact that a single state-of-the-art LED [1], which can produce a luminous flux
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Fig. 1. LOS path geometry between an LED and a flat surface.

of 200 lumen, still cannot provide sufficient illumination for an indoor environment, where an
illuminance of about 400−1000 lux (lumen per m 2) is normally needed. An appealing feature
of such a system with narrow beam LEDs is that it can provide localized, colorful, and dynamic
lighting effects, especially because the intensity level of each LED can be easily changed.

For such an illumination system, in order to optimize the intensity levels of all the LEDs to
achieve certain desired lighting effects, it is essential to have an accurate model for the illumi-
nance distribution of a single LED. In particular, in this letter, we consider the lighting effect
rendered on a flat surface, e.g., the floor, by a single LED, assuming the symmetry axis of the
LED’s radiation pattern to be perpendicular to the floor. More specifically, a two-dimensional
(2D) model for the illuminance distribution is proposed.

In the literature, e.g [2, 3, 4, 5], as well as in the datasheets of actual LED products, e.g.,
[6], various radiation patterns of the LEDs are provided as functions of the observation angle
with respect to the LEDs. One of the most widely used patterns is the generalized Lambertian
pattern [2]. In this letter, by contrast, we provide a 2D analytical model, as a function of the
location on the floor, for the lighting pattern due to a single LED. More specifically, based on
the generalized Lambertian pattern, we provide a simple yet accurate analytical model of the
lighting effect on the floor due to a single LED.

The emitted light from an LED propagates through free space, illuminating a target location,
e.g., the floor. The free space optical channel in principle consists of the line of sight (LOS) path
and diffuse reflections. In this paper, we focus on the modeling of the illuminance distribution
due to the LOS path. The optical power from diffuse reflections is known, by a good approx-
imation, to be uniformly distributed and to be much smaller than that from the LOS path [7],
and therefore is neglected in this paper.

The proposed model for the illuminance distribution is presented in Section 2. Section 3
concludes this letter.

2. Illuminance distribution

Figure 1 depicts the geometry of an LED and an illuminated location with a flat surface, where
r is the distance between the LED and the illuminated location, the projection of r onto the flat
surface has length d, and h denotes the vertical distance between the LED and the flat surface.
The polar angle of the location with respect to the LED is denoted by θ , and the angle of light
incidence on the location is clearly equal to θ .

Thus, from the generalized Lambertian pattern, the illuminance, i.e., the optical power per
unit area, at the location is a function of d or equivalently θ . For convenience in describing the
illuminance distribution on a flat surface at a distance h, we write it as a function of d, denoted

#99776 - $15.00 USD Received 4 Aug 2008; revised 19 Nov 2008; accepted 23 Nov 2008; published 16 Dec 2008

#99496 - $15.00 USD Received 30 Jul 2008; revised 28 Nov 2008; accepted 4 Dec 2008; published 16 Dec 2008

(C) 2008 OSA 22 December 2008 / Vol. 16,  No. 26 / OPTICS EXPRESS  21642



by fL(d),

fL(d) =
m+1

2π
f0 cosm(θ )

cos(θ )
r2 =

(m+1) f0
2πh2

(
1+

d2

h2

)−m+3
2

, (1)

where f0 is the total illuminance, m is the Lambertian mode number and m > 0. The mode
number is a measure of the directivity of the light beam and is related to the semiangle of the
light beam at half power, denoted by Φ1/2, by m = − ln(2)/ ln(cos(Φ1/2)) [2]. Therefore, a
larger m corresponds to a narrower beam. Commercially available LED lenses can shape the
beam of the Lambertian-type LEDs into Φ1/2 = 10o to Φ1/2 = 5o [8, 9, 10], which correspond
to m = 45 and m = 181, respectively. Hence, for the sake of convenience in this paper, we focus
on the range from m = 25 to m = 200.

2.1. Gaussian approximation

For the sake of analytical conveniences and tractability when discussing the illumination ef-
fects of multiple LEDs, we would like to use an approximate model for the actual f L(d).
For instance, in [11], the two-dimensional (2D) Fourier transform is used as FL(u,v) =∫ ∞
−∞

∫ ∞
−∞ fL(x,y)exp(− j2π(ux + vy))dxdy, where fL(x,y) is obtained by writing fL(d) into the

2D Cartesian coordinate system (x,y) through the relation d 2 = x2 + y2. The analytical form of
FL(u,v) for an integer m can be obtained as

FL(u,v) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
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)(m+1)/2 [
K0(2π

√
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]∣∣∣∣

ξ=h2
, if m is odd

(2)

where m!! denotes the double factorial and K0(·) is the modified Bessel function of the second
kind. We can see that it is cumbersome to evaluate the values of FL(u,v) for a large integer m.
Moreover, to our best knowledge, there is in general no analytical expression of FL(u,v) for a
non-integer m. Therefore, we are particularly interested in the approximation models that can
potentially bring convenience in the analysis of illumination effects by multiple LEDs. More
particularly, in this paper, we propose a Gaussian approximation of Eq. (1).

It can be observed from Eq. (1) that the value f L(d) at d = 0 is the largest, and decreases as d
increases. Moreover, for an illumination effect, the human visual system tends to focus on the
bright region rather than the background. Hence, we start from d = 0 and approximate the rate
of decrease in fL(d).

We take the derivative of Eq. (1) with respect to d and get

f ′L(d) =
(m+1) f0

2πh2

(
− m+3

2

)(
1+

d2

h2

)−m+5
2 2d

h2 = − (m+3)d
d2 +h2 fL(d). (3)

When d is small compared to h, i.e., d 2 << h2, d2 +h2 ≈ h2. Hence

f ′L(d) ≈− (m+3)d
h2 fL(d) ∝ −d · fL(d), (4)

which is a property that defines the Gaussian function. This motivates us to approximate f L(d)
as a Gaussian function. The approximation error in f ′

L(d) can be obtained as

Δ f ′L(d) = −m+3
h2

d3

d2 +h2 fL(d). (5)
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Fig. 2. The illuminance distribution at h = 3 meter due to a single LED.

From Eq. (5), the approximation error remains small even when d gets larger, since f L(d)
decreases quickly, especially when m is large, with the increase of d (see Fig. 2).

Next, we derive the key parameters in the Gaussian approximation of f L(d), denoted by

fg(d). Let fg(d) = c
πσ2 exp

{
− d2

σ2

}
, where σ 2 is the variance and c is a normalization factor.

Thus, the derivative of fg(d) with respect to d is

f ′g(d) = − 2d
σ2 fg(d). (6)

Comparing Eq. (4) and Eq. (6), we get σ 2 = 2h2

m+3 . Further, letting fL(0) = fg(0), we get

c = f0
m+1
m+3 . Thus we have

fg(d) =
(m+1) f0

2πh2 exp

{
−m+3

2
· d2

h2

}
. (7)

As an example, the comparison between fL(d) and fg(d) is illustrated in Fig. 2 for the case
h = 3 meter and for different m. The illuminance at every d is normalized by the value at d = 0,

i.e. the curves shown in Fig. 2 are actually 10log10
fL(d)
fL(0) and 10log10

fg(d)
fg(0) . Here, we look at the

numerical data on a logarithmic scale, since human eyes perceive brightness logarithmically,
which property is known as Weber’s law. Further, the range of relative illuminance is considered
to be between 0 and -20 dB. This range is taken because illuminance levels below -20 dB are
no longer visible to human eyes [12] when one is focused on the center part of the light pattern.
It can be seen that the Gaussian approximation is very accurate when m is large, i.e., when the
light from the LED is quite focused. The difference between f L(d) and fg(d) is slightly larger
for a smaller m, e.g., there is a 1 dB difference for m = 50 at d = 1.2m.

The difference between fL(d) and fg(d) can be explained as follows. Comparing Eq. (1) and

Eq. (7), we observe that the approximation we make is actually (1+ d2

h2 )−
m+3

2 ≈ exp(−m+3
2

d2

h2 ),
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or, −m+3
2 ln(1 + d2

h2 ) ≈ −m+3
2

d2

h2 on the logarithmatic scale. Through the approach of Taylor
expansion, we know

−m+3
2

ln
(

1+
d2

h2

)
= −m+3

2
d2

h2 +
m+3

2

(1
2

d4

h4 − 1
3

d6

h6 +O
(d8

h8

))
. (8)

Hence in the above Gaussian approximation, we take only the first term in Eq. (8). Moreover,
from Fig. 2, the range of d of interest is 0≤ d < h. In this range, − m+3

2 ln(1+ d2

h2 ) is larger than

−m+3
2

d2

h2 , since the second term in Eq. (8) is larger than zero. Therefore we get f L(d) > fg(d),
as shown in Fig. 2. The difference between f L(d) and fg(d), as can be seen from Eq. (8) as well
as Fig. 2, increases with d, resulting a larger mismatch in the tail of the illuminance distribution.

Now, in order to compensate for this difference, we propose another Gaussian approximation,
denoted by f̂g(d), with a slightly larger variance σ̂2 = 2h2

m , i.e.

f̂g(d) =
(m+1) f0

2πh2 exp

{
−m

2
· d2

h2

}
, (9)

which is also depicted in Fig. 2. It can be seen that, in general, f̂g(d) provides a better fit of
fL(d), and yet has the benefit of a simpler expression than f g(d). Equivalently from the Taylor

expansion, see Eq. (8), the approximation error is now compensated by 3
2

d2

h2 . Note that here
we only proposed a simple yet effective compensation for the Gaussian model. The discussion
on the optimum compensation for f g(d), which might exist for a given range of d and certain
criterion of optimality, is however beyond the scope of this paper.

As introduced in the beginning of this section, the Gaussian approximation is proposed in this
paper for analytical conveniences when computing the 2D Fourier transform. The illuminance
distribution functions considered in this paper, namely f L(d), fg(d) and f̂g(d), are circularly
symmetric. Therefore, we can easily obtain the equivalent expressions for these functions as
fL(x,y), fg(x,y) and f̂g(x,y) in the 2D Cartesian coordinate system. Henceforth, the 2D Fourier
transform can be applied to these functions, resulting in FL(u,v), Fg(u,v) and F̂g(u,v), respec-
tively. For the Gaussian approximations, Fg(u,v) and F̂g(u,v), we can get the analytical expres-

sions as Fg(u,v) = f0
m+1
m+3 exp

(
− 2π2h2

m+3 (u2 +v2)
)

and F̂g(u,v) = f0
m+1

m exp
(
− 2π2h2

m (u2 +v2)
)

for any m > 0, no matter m is an integer or a non-integer. In order to evaluate the performances
of the Gaussian approximations in terms of Fourier transform, we present some numerical re-
sults in Fig. 3. Here, we again look at the numerical data on a logarithmic scale by evaluating

10log10
FL(u,v)
FL(0,0) , 10 log10

Fg(u,v)
Fg(0,0) and 10log10

F̂g(u,v)
F̂g(0,0) , respectively. Moreover, we focus on an in-

teger m such that we can numerically compute FL(u,v) using Eq. (2). Furthermore, due to the
symmetric property between u and v, and for the sake of convenience, we only show the values
of the Fourier transform as a function of u at v = 0. It can be seen that both Fg(u,v) and F̂g(u,v)
give good approximations of FL(u,v). The accuracy of the approximations is higher for a larger
m, i.e. when a light beam is narrow. Furthermore, F̂g(u,v) is closer to FL(u,v) when FL(u,v) is

large, e.g. 10log10
FL(u,v)
FL(0,0) > −10 dB, where the major part of the signal energy lies.

2.2. Impact of diffuse light

In above discussions, we focus on the LOS path. In practice, light also propagates through one
or more diffuse reflections to arrive at some location. Due to the nature of diffuse reflections,
the light contribution from these non-LOS paths is almost uniformly distributed over the area
of a room. A min-to-max variation in the illuminance of less than 3 dB is observed in the
literature [13]. Moreover, the total received power from diffuse reflections is much smaller than
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Fig. 3. The numerical values of the Fourier transforms, FL(u,v), Fg(u,v) and F̂g(u,v), as
function of u, at h = 3 meter, and v = 0.

that from the LOS path. In [7], a 10-20 dB difference is observed between the power from the
diffuse paths and that from the LOS path at the center of the radiation beam. Since we focus
on the illuminance distribution due to the LEDs with narrow beams, diffuse light mostly has to
undergo at least two reflections before arriving at the location, unless the LED is located very
close to a wall or other objects. Therefore the path loss is even higher and we can treat the effect
of diffuse light reflections on illumination rendering to be negligible.

3. Concluding remarks

In this letter, we show that the illuminance distribution on a flat surface by a single LED with
a generalized Lambertian radiation pattern can be well approximated by a Gaussian function.
The approximation error is negligible for the LED with a narrow beam width, e.g. 10 o to 5o. In
addition to the analytical Gaussian model obtained, we also provide a modified Gaussian model
which gives a better fit of the actual illuminance distribution. An application for this Gaussian
model is that we can efficiently analyze the illuminance distributions for the illumination system
consisting of a large number of LEDs.
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